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A = f(C). For our purposes we replace condition (t) by the less restricting but
closely related condition
(tt) lim sup [fn(C)] C s f(C),
where f :X -- Y is a mapping related in some specified way to the sequence of
mappings f,, :X -- Y. We may then state the
THEOREM. Let f :X Y be a sequence of quasi-open mappings and suppose there

exists a mapping f:X -- Y with point inverses having compact components such that
for each x e X there exists an arbitrarily close region 1? in X with boundary C about the
component of f-1f(x) containing x such that (tt) holds on C. Then fn(x) converges
almost uniformly to f(x) on X.
As already indicated, this theorem has implications for sequences of functions

similar to those mentioned in the earlier sections for the corresponding theorems
on sequences of monotone mappings. The application of the theorem to the case of
a closed algebra of mappings of X into Y is of special interest and will receive at-
tention in a later paper.

* This research was supported by the United States Air Force through the Air Force Office of
Scientific Research of the Air Research and Development Command, under contract No. AF
49(638)-71 at the University of Virginia.

1 G. T. Whyburn, "Regular convergence and monotone transformations," Am. J. Math., 57, 902-
906, 1935.

2 K. Menger, Kurventheorie (Berlin: B. G. Teubner, 1932).
3L. Whyburn, Ergeb. Math. Kolloq. 2, p. 11, 1930. This theorem may be found also in Men-

ger's Kurventheorie, pp. 278-279.
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1. Introduction.-In this investigation we apply the method developed in Part
I' to the determination of the coefficients of viscosity and heat conduction and of
the perturbations in the respective distribution functions in a simple gas of the
rigid sphere model. The essence of the method consists in reducing the Boltzmann-
Hilbert integral equation, which controls the distribution function f(c, r, i) of the
molecules in space r and in velocity-space c, to an ordinary differential equation.
In the cases of viscosity and heat conduction, the respective differential equations
are of the fourth order. These are integrated numerically on the electronic com-
puter (WEIZAC) to obtain the distribution functions, and from the latter the co-
efficients of viscosity and heat conduction are evaluated.

Let the gas molecules be rigid spheres of diameter o and mass m. Further, let

f° = n (2 T) exp (- C = co-
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f =o"(I + 0), p = C InkT (1)
2kT'~~~~~~~~~2

O~f Ofa + Of + F. Ofe (2)

where T denotes the temperature of the gas, n the number density, k Boltzmann's
constant, and F the force per unit mass acting on the molecules. Then on treating
p as a small quantity of the first order, the Boltzmann-Hilbert integral equation
takes on the form

a2n2m ( 2-2 2 AZfo = - 2 kT jM(p)e-2P2 ((p) + e-Pe p(pl)e-p2(R -Re2dpi (3)

where

M(p) = 1 + (2p + -) P(p), P(p) = en' f e-X2dx, (4)

R |P- P11 = PPi sin ' (5)
R

and 0' denotes the angle between p and pi.
In evaluating Df0, we allow for variation in space of the quantities n, C, and T,

obtaining

JZfJ= j rC P+ p2 -2)C Pla+ 2 PiPk - P2 jk (6)

Here p, denotes the components of p, and uoi the components of co. The first term
in equation (6) is proportional to the density gradient and enters into the deter-
mination of the coefficient of self-diffusion, which was treated in Part I. In this
investigation we shall treat the problems of heat conduction and viscosity, for
which Zf0 is represented by the second and third terms, respectively, in equation
(6).

2. The Differential Equation for the Distribution Function in the Case of Vis-
cosity.-In treating viscosity, we let n and T be constant, so that Zf0 reduces
to the terms proportional to the velocity gradients in equation (6). An appro-
priate form for (p in this case is

= - i~/2 b(p) (pipk p2k)bi (7)

where the summation convention is adhered to. On substituting equations (6)
and (7) in equation (3) and equating the coefficients of auOi/aXk, we get

PiPk 1 P2a9\k= iPk P 2
ik M(p)eP' b(p)3 3 ()

+ J(PilPkl - P12bik) b(pl)e-P1(R - - e'')dpi] (8
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It is convenient to let i = k = 3 in equation (8), whereby it takes on the form

p2P2(cos 0) = [p2M(p)e-P' b(p)P2(cos 0)

+ - r p12P2(cos 0i)b(p)e-P1 (R -
2

e )dpij.

As was pointed out in Part I, this integral equation involves only the component
A2(p, pl) of the expansion of the kernel [R - (2/R)e'2] into spherical harmonics of
the angle 0' betweenp and pi:

[ (- ) e = ( + AA(p, pl)Pn (cos 0'). (10)

Using equation (10) in equation (9), we obtain

f p1e~&'2 b(pi) (R - ec2) P2(cos 01)dp1 (11)

- 27r P2(cos 0) f pi4e-P1 b(pi)A2(p, pl)dPl,

whereby the three-dimensional integral equation (9) reduces to the following one-
dimensional integral equation:

p2 = p2M(p)e-P2 b(p) + 2 e-P'l2 p14A2(p, p1)b(pi)dpi. (12)

The kernel A2(p, pi), which is symmetrical in the arguments p and pi, was pre-
viously2 evaluated in the explicit form

p3p13A2(p, pi) 35 pi7 - 3pi3 + 18p, + (-6pi4 + 15p2 -18)P(pi)]

2 (13)
+ P22 pi, + 3p, + (2pi2 - 3)P(p1)7, pi < p (

= p7 - 3p3 + 18p + (-6p4 + 15p2 -18)P(p)]

2 ~~~~~~~~~~~~~(14)
+ p12 [ p5 + 3p + (2p2 - 3)P(p)], p > p.

Putting

(p) p5 - p5M(p)e-P2 b(p), (15)

the integral equation (12) takes on the form

Vp) = f e- b(x) X8 - 6x4 + 36X2 + (-12x6 + 30x3 - 36x)P(x)]dx

+ p2 b(x) - 4- X6 + 6X2 + (4x3 - 6x)P(x)]dx
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+ [ p5PI+ 6p + (4p2 - 6)P(p)]f e-x b(x)x3dx (16)

+ [ p7 -6p3 + 36p + (-12p4 + 30p2 - 36)P(p)] elx'b(x)xdx.

We now proceed to reduce this integral equation to a differential equation. We
have

1d =
P e-2b(x) -X6 + 2X2 + (8X3 -12x)P(x)]dx

pdpJO \XL 15 1

+ p3p3+ 4p + (8p2 - 4)P(p)] ex x3b(x)dx

+ 5p- 12p3 + 12p + (-24p4 + 12p2 - 12)P(p)] e~x' b(x)xdx. (17)

Let

y(P) = - p2 e X2 b(x)xdx + 2 e-x2 b(x)x3dx, (18)
2 2

so that

e x2b(x)xdx = - (19)
P ~~~~P

cop~~~~~b-"xb dx = 2y- pj~, e plb(p) =pp - , (20)

the dots denoting differentiation with respect to p.
Using these substitutions in equation (17), we are left with only the first integral,

and the latter can be reduced by an additional differentiation, yielding the following
differential equation for the determination of y(p):

[p2 + (p + 2p3)P(p)]y'v + [6p + 4p3 + (2 + 16p2 + 8p4)P(p)]y

+ [1 + 20P2 + 4p4 + - + lOp + 44p3 + 8p5)P(p)]Y
(21)

+ - + 4p + 12p3 + ( - 10 + 20p2 + 24p4)P(p)}

+ [8p2 + (16p + 32p3)P(p)]y = 15p2.

We are interested in a solution of equation (21) which is regular in the whole range,
of p from 0 to w.
A result similar to, but not identical with, equation (21) was obtained by Boltz-

mann3 toward the end of his third paper on viscosity. Boltzmann derived an
equation4 which is equivalent to equation (17) above; however, in deducing from
it the fourth-order differential equation for y, he committed several errors. His
equation (38) should read
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15x = [2x3 + (X2 + 2x3)] YIV + [12X2 + 4x3 + (4x + 14X2 + 4xs)t]Y

+ [lix + 16X2 + 2x3 + (2 + 16x + 17X2 + 2xs)t] P + [6x + 4X2 (22)

+ (8x + 4x2)t]1 + [x + (1 + 2x) ]Y,

where

X = p2, t = 2pP(p), Y(x) = 8y(p). (23)

Equation (22) is identical with equation (21).
The method by which Boltzmann arrived at the differential equation (22) is

extremely laborious, the derivation covering 160 pages, of which over 40 are pure
mathematics,5 in the sense that they are either entirely word-pure or are adorned
with just one sentence.

3. The Differential Equation for the Distribution Function in the Case of Heat
Conduction.-With n and co constant in space, equation (6) reduces to

WfO = fo (p2 - ) C. a l 2kT P p2 5
P. a

In T (24)

A suitable form for p now is

V a(p)p. a (25)

When equations (24) and (25) are substituted in equation (3) and the coefficients
of ?T/?r are equated, we get the following integral equation for the determination
of a(p):

M(p)e-P a(p)p + f. a(pi)pi e-P1 (R - - e'2) dp1 = (p2 - P. (26)

By now taking p in the direction of z, equation (26) assumes the form

pM(p)eP' a(p)Pi(cos 0) + - f pia(pi)eP1 P1(cos 01) (R -e- ' dp

- (p3 - p)Pl(cos 0). (27)

This equation evidently involves only the first harmonic AI(p, pi) in the expansion
(10) of the kernel [R - (2/R)e 2]:

f pla(pl)eP"2 Pi(cos 01) (R - e2')dpi
co=2irP1(cos 0) f p1~a(pi)e""P" Ai(p, p1)dpl,' (28)

so that equation (27) reduces to

5
pM(p)e- 2 a(p) + 2 e P" pl3a(pi)AI(p, pl)dpi = p3 - p. (29)
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Here2

p2p,2Ai(p, pi) = -2p5- 4g(pi) - 2pap2

=
2

p5 - 4g(p)- pp2a,

pi < P.

pl > Pi

(30)

(31)

g(p) = [p + (p2-l)P(p)], P-P(P)= ep e
e_$ dx. (32)

Thus a(p) is a solution of the one-dimensional integral equation

'y(p) = p6 4p3 - pM(p)e-l2 a(p)

= fs e ' a(x)x [A X - 8g(x) -
4
p2x3Jdx

+ e a(x)x [ p5 - 8g(p) - p3x2]dx. (33)

As in the previous section, we proceed to turn the integral equation (33) into a

differential equation by first introducing an auxiliary function,

S(p) = e-2 xa(x)dx. (34)

Repeated differentiation of equation (33) yields

d2 1 dy d2 IS dg\
=8 -8pS,

dp2 \pdp/ dp2 \pdp/

or

[p2 + (2p3 + p)P(p)]S'v + [7p + 6p3 + (1 + 20p2 + 12p4)P(p)]S

+ [2 + 42p2 + 12p4 + - - + 26p + 96p3 + 24p6) P(p)JS
- ~~~~~p

(35)

(36)

+ [- - + 38p + 72p' + 8p6 + 2- 2 + 140p2 + 152p4 + 16p6) P(p)] S

+ [56p2 + 32p4 + (32p + 160p3 + 64p6)P(p)]S = 30p2.

The solution SI(p) of equation (36), which is required for our application, is to be
regular in the whole range of p extending from 0 to oo. In addition to Sj(p), the
homogeneous differential equation (36) also possesses the regular solution

-So(p) =Ae-"
so that

S(p) = Sj(p) + Ae-P.

The availability of So(p) enables us to satisfy a condition on S(p):

(37)

(38)

where
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f S(p)p2dp = 0, (39)

which is required6 in order that

ffomCdc = ffmCdc. (40)

Equation (40) expresses the normalization condition that the mean flow be given
by co, even in the presence of the temperature gradient.

4. The Coefficients of Heat Conduction and Viscosity.-The flow of heat, q, is
given by

q -= fOpC2Cdc = - m 12kT C 6p2lnT2 pa(p)dp2J ~~~~27r20,2 M ) ePp2r (41)
4k 2kT OT eP2 6
3~j2~m~r J 'a(p)pldp= y.37rar2im br j -apps =_AarT

Hence we get for the coefficient of heat conduction, X,

4k I2kT co
X k= 2kimJo ep a(p)psdp. (42)

In the case of viscosity, the non-hydrostatic part of the stress tensor, i is ex-
pressed by

r= m fo(CjCdc =

2kTe/2rnf e bb(p) (PiPk - I p256 P (43)
T (7 kT3 / a ppk p

When this is evaluated, we obtain expressions for Tjjl of the Stokes-Navier form,
with a coefficient of viscosity, Iu, given by

8V2mkT eP2 b(p)p6dp. (
lairu2 Jo

5. Integration of the Differential Equations.-Taking first the differential equa-
tion (36) for the distribution function S(p) in the case of heat conduction, we find
from the indicial equation at the origin the following allowed values for the leading
powers n of p:

n = -1, 1, 2. (45)

Of these, the value 1 is disallowed, because, according to equation (34), S(0) must
vanish; and so is also the value n = -1. The index n = 0 gives the solution (37),
and there is another regular solution, S2(p), starting with p2. The inhomogeneous
solution S4(p) of equation (36) starts with the power p4.
At infinity, there are, in addition to equation (37), four solutions with the follow-

ing leading terms in their asymptotic expansions:

pep2 l p22epP2 (46)

1004 PROC. N. A. S.
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of which the first is the inhomogeneous solution. Both S2(p) and S4(p) were found
upon numerical integration to approach the (1/p4)-solution for large values of p.
The ratio of S2(p) to S4(p) therefore approaches a constant, whereby one can de-
termine a linear combination of S2(p) and S4(p) which is free from the (1/p4)-
solution. This procedure was found to be sufficiently accurate to obviate the need
of integrating the first three solutions in (46) backward from large values of p, and
then matching them at some intermediate value with a linear combination of
S2(p) and S4(p).
The solution S(p) thus obtained, regular in the whole range of p, is shown in

Table 1. Expression (42) for the coefficient of heat conduction, X, can be written
in the non-dimensional form,

X
= _ 256 /2 f p4S(p)dp, (47)

Xi 45 T o

where

75k ~/kT (8

-= - (48)

Using the values of S(p) obtained by the numerical integration of equation (36),
we obtain a value of 1.025218 for (X/X1). The values for (X/X1) obtained in the suc-
cessive approximations of the Chapman-Enskog method' are

1, 1.02273, 1.02482, 1.02513. (49)

In the case of the distribution function y(p) for viscosity, which is governed by
the differential equation (21), we find, from the indicial equation at the origin, the
following allowed values for the leading powers n of p:

n = -1, 0,1, 2, (50)

of which, in addition to n = -1, the value n = 1 is also disallowed on account
of the requirement, resulting from equation (19), that y(0) must vanish. Near the
origin we need to integrate the solutions yo(p) and Y2(P), belonging to n = 0 and
n = 2, respectively, as well as the inhomogeneous solution y4(p) starting with p4.

For large values of p, the leading terms in the asymptotic solutions of equation
(21) are

pIeP p-3 i-A3e-2- 3 i+/i-P2-\/3 (51)

of which the first is the inhomogeneous solution. Asymptotically, the solutions
yO(p), y2(p), and y4(p) are dominated by the last two solutions of (51). As in the
case of heat conduction, these solutions were eliminated by using the limiting
values of the cross-ratios of yo(p), y2(p), and Y4(p) for large p. The resulting solu-
tion, y(p), thus obtained, regular in the whole range of p, is shown in Table 1.
The expression for the coefficient of viscosity u given in equation (44) can be

put in the form

_ - 256 co
5 Jo p2y(p)dp, (52)jti 5V2J 0
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with

1SVAT~ (53)

Values for (,u/Alj) obtained in the successive approximations of the Chapman-Enskog
method7 are

1, 1.01485, 1.01588, 1.01600. (54)

Using the values of y(p) obtained by numerical integration of equation (21), we
obtain the value of 1.016034 for (MIyi).

In the first-order theory presented in this paper it was assumed that so in equation
(1) is less than 1. We see from Table 1 that the quantities p2b(p) and pa(p), which

TABLE 1*

P = C Ik2T
p S(P) pa(p) y(p) p'b(p)

0 0.597142 0 0.125867 0
0.1 .586378 -0.215765 .124491 0.006196
0.2 .555074 -0.424299 .120458 0.024668
0.3 .506062 -0.618610 .114028 0.055080
0.4 .443610 -0.792152 .105611 0.096902
0.5 .372844 -0.938986 .095711 0.149447
0.6 .299102 -1.053877 .084882 0.211920
0.7 .227314 -1.132324 .073677 0.283462
0.8 .161529 -1.170543 .062599 0.363191
0.9 .104613 -1.165432 .052070 0.450239
1.0 .058160 -1.114455 .042407 0.543772
1.1 .022569 -1.015593 .033820 0.643015
1.2 - .002738 -0.867241 .026416 0.747251
1.3 - .019035 -0.668134 .020210 0.855835
1.4 - .027987 -0.417277 .015146 0.968190
1.5 - .031383 -0.113887 .011121 1.083802
1.6 - .030923 0.242651 .008000 1.202218
1.7 - .028074 .652825 .005639 1.323043
1.8 - .024002 1.117023 .003895 1.445929
1.9 - .019556 1.635558 .002637 1.570574
2.0 - .015295 2.208681 .001749 1.696714
2.1 - .011537 2.836601 .001138 1.824122
2.2 - .008421 3.519490 .000725 1.952596
2.3 - .005962 4.257492 .000453 2.081966
2.4 - .004101 5.050729 .000277 2.212081
2.5 - .002744 5.899307 .000166 2.342811
2.6 - .001789 6.803316 .000098 2.474043
2.7 - .001136 7.762836 .000057 2.605678
2.8 - .000704 8.777936 .000032 2.737632
2.9 -.000426 9.848679 .000018 2.869832
3.0 - .000252 10.975 .000010 3.0022
3.1 - .000145 12.157 .000005 3.1347
3.2 - .000082 13.395 .000003 3.2673
3.3 - .000045 14.689 .000001 3.3999
3.4 - .000024 16.039 0.000001 3.5325
3.5 - .000013 17.444 ... 3.6651
3.6 - .000007 18.906 ... 3.7977
3.7 -.000003 20.423 ... 3.9301
3.8 - .000002 21.997 ... 4.0625
3.9 -0.000001 23.626 ... 4.1947
4.0 ... 25.319 ... 4.3268
5.0 ... 45 ... 5.6

* The dependence of the perturbation in the distribution function on p is given by pa(p)eVp2 in the case of
heat conduction and by p2b(p)evp2 in the case of viscosity.
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represent the factors depending on p in equations (7) and (25), become large for
large values of p. Hence the linearized approximation becomes relatively poorer
for large values of momenta.
Summary.-In a previous publication' it was shown that it is possible to reduce

the Boltzmann-Hilbert integral equation, occurring in the classical problem of
transport phenonena in a rigid-sphere gas model, into a differential equation. In
the case of self-diffusion treated there, this differential equation was of the second
order, and its solution yielded a value for the coefficient of self-diffusion which was
in good agreement with the value obtained by the variational Chapman-Enskog
method. In this paper the method is applied to the problems of heat conduction
and viscosity. In both cases the differential equations for the respective distribu-
tion functions are of the fourth order. The solution of these equations leads to
values for the coefficients of heat conduction and of viscosity which are in good
agreement with the values obtained by the Chapman-Enskog method. From the
tabulated values of the distribution functions it follows that the linearized approxi-
mation becomes relatively poorer in the outer regions of momentum-space. A
differential equation of the fourth order for the distribution function in the case
of viscosity was derived by L. Boltzmann.3 Boltzmann's differential equation is
incorrect as it stands because of errors that crept into the last stages of his deri-
vation. Boltzmann did not integrate the differential equation. To the authors'
knowledge the differential equation governing the distribution function in the case
of heat conduction, which is derived and solved in this paper, is new.

1 C. L. Pekeris, these PROCEEDINGS, 41, 661, 1955. This paper will be referred to as "Paper I."
2 Ibid., eq. (18).
3 L. Boltzmann, Collected Works, 2 (1881), 545.
4 Ibid., eq. (37), p. 544. Here 4t(p2) = 2b(p).
6 Ibid., pp. 479-522.
6 See S. Chapman and T. G. Cowling, The Mathematical Theory of Non-uniform Gases (Cam-

bridge: At the University Press, 1952), pp. 109 and 121.
7 Ibid., p. 169.

PROTEIN SYNTHESIS AND TISSUE INTEGRITY IN THE
CORNEA OF THE DEVELOPING CHICK EMBRYO*
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Communicated by Francis 0. Schmitt, September 25, 1957

In the course of investigations of protein formation in the tissues of the chick
embryo, two systems have been used so far in this laboratory for the comparison of
tracer incorporation and protein accumulation in developing cells: isolated protein
fractions of muscle tissue obtained from embryos developing in ovo' and the total
protein moiety of early explanted embryos.2' The first approach offers advantages
for the preparation of well-defined protein fractions. But the interpretation of
the data obtained from in vivo systems is complicated by the changing relationships
of the tracer levels in the blood, in the cell pool, and in the proteins of the embryo.
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